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A new sulfate acid polymorph of 1,3-dihydrobenzotriazole,

viz. 1,3-dihydrobenzotriazolium hydrogensulfate, C6H6N3
+�-

HSO4
ÿ, differs from an existing polymorph in that the

polymeric interaction between the HSO4
ÿ anions, together

with different classical (DÐH� � �A) and nonclassical (CÐ

H� � �A) interactions, changes the space group.

Comment

Heterocyclic compound (I) (see scheme) contains acidic H

atoms and N atoms with lone electron pairs. The presence of

both acidic and basic characteristics gives the molecule the

ability to participate in a wide variety of interactions. More-

over, tautomerism in (I) can change the reactivity depending

on the starting material (Jagerovic et al., 2002; Katritzky et al.,

1998; Gallinek, 1897; Elder®el, 1957). This diversity gives rise

to the possibility of different structural arrangements or

polymorphs. For aliphatic amines this outcome is expected,

but in this case the molecule is planar and polymorphs are not

common (Blagden & Davey, 2003; Davey, 2003; Mak & Zhou,

1992; Dunitz, 1979).

The title compound, (II), crystallized in the monoclinic

space group P21/c from a mixture of tetrahydrofuran (THF)

and hexane. The structure (Fig. 1) shows the presence of acidic

H atoms on atom N3 and on the HSO4
ÿ counter-ion. The

crystal packing (Fig. 2) is structured by classical and

nonclassical hydrogen bonds, the most important of which are

listed in Table 1. Three of these are classical hydrogen bonds

(NÐH� � �O), while the others are nonclassical (CÐH� � �O).

Two particularly strong interactions are H3� � �O4 and

H1� � �O3. Some of the hydrogen bonds are complex. For

example, the N1ÐH1 group is considered a bifurcated donor

because it interacts with atoms N2 and O3. Atom O2 is

considered as a trifurcated acceptor because it interacts with

the C6ÐH6, C4ÐH4 and C7ÐH7 bonds. All such interactions

are important because they contribute to the geometry of the

lattice. The HSO4
ÿ ions are joined together by strong OÐ

H� � �O S hydrogen bonds that are nearly ideal in geometry

(Steiner, 1998, 2002; Jeffrey, 1997).

As a result of these interactions, the 1,3-dihydrobenzo-

triazolium cations pack in a herring-bone pattern in the ab

plane with the hydrogensulfate anions interspersed (Fig. 3). A

polymorphic structure of (II) was reported by Giordano

(1980), which crystallizes in the orthorhombic space group

Pbcn. The phosphoric acid salt of 1,3-dihydrobenzotriazole,

(IV), is also known (Emsley et al., 1988) and crystallizes in the

triclinic space group P1 with similar packing to (II).

In Table 2, the bond distances for polymorphs (II) and (III)

(Giordano, 1980) and compound (IV) (Emsley et al., 1988) are

compared. Polymorphs (II) and (III) show similar bond

distances, while in (IV) they are slightly longer. It can also be
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Figure 2
The polymeric arrangements in (II), formed by classical and nonclassical
hydrogen bonds (dotted lines). The view is along the b axis. [Symmetry
codes: (i) x, ÿy + 3

2, z ÿ 1
2; (ii) ÿx, y ÿ 1

2, ÿz + 1
2; (iii) ÿx + 1, y + 1

2, ÿz + 1
2.]

Figure 1
A view of the molecule of (II), showing 50% probability displacement
ellipsoids and the atom-numbering scheme.



observed that the distances decrease in the crystal system

order triclinic ! monoclinic ! orthorhombic. This re¯ects

better packing as the symmetry increases. Fig. 4 shows the

rearrangement of the HSO4
ÿ anion corresponding to poly-

morphs (II) and (III). The SÐOÐH� � �O S hydrogen bond

[1.84 (4) and 1.478 AÊ ] is in fact the reason that the HSO4
ÿ ions

stay together in the supramolecular polymeric structure. We

can conclude that these interactions are stronger in (III) than

in (II). Consequently, the chains in (III) have an almost linear

shape, while those in (II) have a zigzag shape, and the

distances are shorter, stronger and more ef®cient in the

orthorhombic lattice in (III) compared with the monoclinic

lattice in (II).

Experimental

A mixture of (I) (400 mg, 3.36 mmol) and dry THF (10 ml) was

cooled to 223 K; H2SO4 (0.18 ml, 329 mg, 3.36 mmol) was added and

the mixture was stirred for half an hour. The mixture was then ®ltered

and the white powdered product (II) (98% yield, m.p. 437±439 K)

was partially dissolved for crystallization in a THF/hexane mixture.

m/z (intensity, %): 207 (1), 133.35 (100), 105 (100). IR (KBr), �max:

2100±3600 (OH), 3300 (NH), 1723 (N N), 1612 (C C). Analysis

calculated: C 33.18, H 3.25, N 19.35, S 14.76%; observed: C 33.53, H

3.30, N 19.02, S 13.24%. The structure of (I) (see scheme below) was

analyzed by 1H and 13C NMR spectroscopy, which showed a

symmetrical molecule, three signals for 1H and four for 13C. The NÐ

H chemical shift in (II) was shifted to lower frequency (2.62 p.p.m.)

compared with NÐH for (I). Double protonation was not observed

for (I); in fact, atom N2 is not a basic position, because no different

±NH signal was observed in the 1H NMR spectrum. No signi®cant

changes were observed in the 13C NMR spectrum because there were

no changes in the aromatic ring.

Crystal data

C6H6N3
+�HSO4

ÿ

Mr = 217.21
Monoclinic, P21=c
a = 12.715 (3) AÊ

b = 5.133 (1) AÊ

c = 14.406 (4) AÊ

� = 113.63 (1)�

V = 861.4 (4) AÊ 3

Z = 4
Mo K� radiation
� = 0.37 mmÿ1

T = 273 (2) K
0.25 � 0.20 � 0.20 mm

Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan

(Blessing, 1995)
Tmin = 0.913, Tmax = 0.930

9336 measured re¯ections
1969 independent re¯ections
1637 re¯ections with I > 2�(I )
Rint = 0.038

Re®nement

R[F 2 > 2�(F 2)] = 0.035
wR(F 2) = 0.095
S = 1.07
1969 re¯ections

156 parameters
All H-atom parameters re®ned
��max = 0.26 e AÊ ÿ3

��min = ÿ0.34 e AÊ ÿ3

All H atoms were re®ned freely [CÐH = 0.90 (2)±0.97 (3) AÊ ].

Data collection: COLLECT (Nonius, 2000); cell re®nement:

SCALEPACK (Otwinowski & Minor, 1997); data reduction:

SCALEPACK and DENZO (Otwinowski & Minor, 1997);

program(s) used to solve structure: SHELXS97 (Sheldrick, 1997);

program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997);

molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); soft-

ware used to prepare material for publication: WinGX (Farrugia,

1999).
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Table 1
Hydrogen-bond geometry (AÊ , �).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

N1ÐH1� � �O3i 0.83 (2) 1.93 (3) 2.695 (2) 153 (2)
O1ÐH1A� � �O4ii 0.82 (4) 1.84 (4) 2.659 (2) 173 (3)
N3ÐH3� � �O4 0.87 (3) 1.93 (3) 2.792 (2) 173 (3)
C4ÐH4� � �O2 0.90 (2) 2.48 (3) 3.269 (3) 146 (2)
C6ÐH6� � �O2iii 0.96 (3) 2.57 (3) 3.306 (3) 133.7 (19)

Symmetry codes: (i) x;ÿy� 3
2; zÿ 1

2; (ii) ÿx; yÿ 1
2;ÿz� 1

2; (iii) ÿx� 1; y� 1
2;ÿz� 1

2.

Figure 3
The herring-bone arrangement formed by classical and nonclassical
hydrogen bonds (dotted lines) in the crystalline network of (II). The view
is along the a axis.

Figure 4
Hydrogen bonds (in AÊ ) between HSO4

ÿ anions in (II) (upper ®gure; this
work) and (III) (lower ®gure; Giordano, 1980).
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Table 2
Comparison of selected of bond distances (AÊ ) of (II), (III) and (IV).

(II)a (III)b (IV)c

N1ÐN2 1.315 (2) 1.310 1.317 (3)
N2ÐN3 1.311 (2) 1.312 1.314 (3)
C4ÐC5 1.364 (3) 1.365 1.368 (4)
C5ÐC6 1.406 (3) 1.416 1.414 (4)
C6ÐC7 1.369 (3) 1.356 1.370 (4)
C7ÐC8 1.397 (3) 1.391 1.402 (4)
C8ÐC9 1.389 (2) 1.391 1.390 (3)
C4ÐC9 1.404 (3) 1.392 1.400 (4)
C9ÐN3 1.363 (3) 1.367 1.364 (3)
C8ÐN1 1.358 (3) 1.362 1.365 (3)
O1ÐS1 1.5576 (17) 1.539 ±
O2ÐS1 1.4179 (18) 1.431 ±
O3ÐS1 1.4453 (17) 1.435 ±
O4ÐS1 1.4696 (14) 1.449 ±

Notes: (a) this work, monoclinic; (b) Giordano (1980), orthorhombic; (c) Emsley et al.
(1988), triclinic.


